Developments in industrially important thermostable enzymes: a review.

نویسندگان

  • G D Haki
  • S K Rakshit
چکیده

Cellular components of thermophilic organisms (enzymes, proteins and nucleic acids) are also thermostable. Apart from high temperature they are also known to withstand denaturants of extremely acidic and alkaline conditions. Thermostable enzymes are highly specific and thus have considerable potential for many industrial applications. The use of such enzymes in maximising reactions accomplished in the food and paper industry, detergents, drugs, toxic wastes removal and drilling for oil is being studied extensively. The enzymes can be produced from the thermophiles through either optimised fermentation of the microorganisms or cloning of fast-growing mesophiles by recombinant DNA technology. In this review, the source microorganisms and properties of thermostable starch hydrolysing amylases, xylanases, cellulases, chitinases, proteases, lipases and DNA polymerases are discussed. The industrial needs for such specific thermostable enzyme and improvements required to maximize their application in the future are also suggested.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potential and utilization of thermophiles and thermostable enzymes in biorefining

In today's world, there is an increasing trend towards the use of renewable, cheap and readily available biomass in the production of a wide variety of fine and bulk chemicals in different biorefineries. Biorefineries utilize the activities of microbial cells and their enzymes to convert biomass into target products. Many of these processes require enzymes which are operationally stable at high...

متن کامل

Highly Thermostable Xylanase Production from A Thermophilic Geobacillus sp. Strain WSUCF1 Utilizing Lignocellulosic Biomass

Efficient enzymatic hydrolysis of lignocellulose to fermentable sugars requires a complete repertoire of biomass deconstruction enzymes. Hemicellulases play an important role in hydrolyzing hemicellulose component of lignocellulose to xylooligosaccharides and xylose. Thermostable xylanases have been a focus of attention as industrially important enzymes due to their long shelf life at high temp...

متن کامل

High-level expression of thermostable cellulolytic enzymes in tobacco transplastomic plants and their use in hydrolysis of an industrially pretreated Arundo donax L. biomass

BACKGROUND Biofuels production from plant biomasses is a complex multi-step process with important economic burdens. Several biotechnological approaches have been pursued to reduce biofuels production costs. The aim of the present study was to explore the production in tobacco plastome of three genes encoding (hemi)cellulolytic enzymes from thermophilic and hyperthermophilic bacterium and Archa...

متن کامل

Genome Sequence of the Multiple-Protease-Producing Strain Geobacillus thermoleovorans N7, a Thermophilic Bacterium Isolated from Paniphala Hot Spring, West Bengal, India

Here, we present the draft genome sequence of Geobacillus thermoleovorans strain N7 (MCC 3175), isolated from Paniphala Hot Spring, West Bengal, India, which contains genes that encode several industrially and medically important thermostable enzymes like neutral protease, xylose isomerase, rhamnogalacturonan acetylesterase, nitrate and nitrite reductase, l-asparaginase, glutaminase, and RNase P.

متن کامل

Thermostable Carbonic Anhydrases in Biotechnological Applications

Carbonic anhydrases are ubiquitous metallo-enzymes which catalyze the reversible hydration of carbon dioxide in bicarbonate ions and protons. Recent years have seen an increasing interest in the utilization of these enzymes in CO2 capture and storage processes. However, since this use is greatly limited by the harsh conditions required in these processes, the employment of thermostable enzymes,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 89 1  شماره 

صفحات  -

تاریخ انتشار 2003